Strong Uniqueness for Chebyshev Approximation by Reciprocals of Polynomials on $[0, \infty)$

Darrell Schmidt
Department of Mathematical Sciences, Oakland University. Rochester, Michigan 48063

Communicated by E. W. Cheney
Received July 2, 1979

1. Introduction

Let $\left.\quad C_{0}^{+} \mid 0, \infty\right)=\{f \in C \mid 0, \infty): \quad f(x)>0 \quad$ for $\left.\quad x \in \mid 0, \infty\right)$ and $\left.\lim _{x, \ldots} f(x)=0\right\}$ and $R_{n}=\left\{1 / p: p \in \Pi_{n}\right.$ and $p(x)>0$ for $\left.x \in[0, \infty)\right\}$, where Π_{n} denotes the set of all real algebraic polynomials of degree n or less. For $\left.g \in C_{0}^{+} \mid 0, \infty\right)$, define $\left.\|g\|=\sup \{|g(x)|: x \in \mid 0, \infty)\right\}$. Uniform approximation of functions in $\left.C_{0}^{+} \mid 0, \infty\right)$ by reciprocals of polynomials has been the topic of several recent investigations (see $|1,2,5|$ and the references of $[5 \mid$). In this setting, it is known that best approximations exist and are unique $|1,2|$ and the following characterization theorem holds $|2|$.

Theorem 1. Let $\left.f \in C_{0}^{\dagger} \mid 0, \infty\right) \backslash R_{n}$ with $n \geqslant 1$, and let $1 / p^{*} \in R_{n}$. Then $1 / p^{*}$ is a best approximation to f from R_{n} if and only if
(i) (standard alternation) there exist $n+2$ points $0 \leqslant x_{0}<x_{1}<\cdots<$ $x_{n-1} \quad$ such that $\left|f\left(x_{i}\right)-1 / p^{*}\left(x_{i}\right)\right|=\left\|f-1 / p^{*}\right\|, \quad i=0, \ldots, n+1, \quad$ and $f\left(x_{i}\right)-1 / p^{*}\left(x_{i}\right)=-\left(f\left(x_{i+1}\right)-1 / p^{*}\left(x_{i+1}\right)\right), i=0, \ldots, n$, or
(ii) (nonstandard alternation) $c p^{*} \leqslant n-1$ and there exist $n+1$ points $0 \leqslant x_{0}<x_{1}<\cdots<x_{n}$ such that $f\left(x_{i}\right)-1 / p^{*}\left(x_{i}\right)=(-1)^{n}\left\|f-1 / p^{*}\right\|$. $i=0 . \ldots, n$, where ∂p^{*} denotes the degree of p^{*}.

In the remainder of this note $1 / p_{f}$ shall denote the best approximation to $\left.f \in C_{b} \mid 0, \infty\right)$ from R_{n}.

In this note we study strong uniqueness of $1 / p_{r}$ and point Lipschitz continuity of the best approximation operator. In Brink [1], it was shown that if $c p_{f}=n$, then $1 / p_{f}$ is a strongly unique best approximation to f from R_{n}, that is. there is a constant $\gamma_{f}>0$ such that

$$
\|f-1 / p\| \geqslant\left\|f-1 / p_{f}\right\|+\gamma_{f}\left\|1 / p-1 / p_{f}\right\|
$$

for all $1 / p \in R_{n}$. A companion result is that $1 / p_{f}$ is point Lipschitz continuous at f, that is, there is a constant $\lambda_{f}>0$ such that

$$
\left\|1 / p_{g}-1 / p_{f}\right\| \leqslant \lambda_{1}\|g-f\|
$$

for all $\left.g \in C_{0} \mid 0, \infty\right)$. In Dunham and Taylor $|5|$ it was shown that if $\partial p_{f}<n-1$, then $1 / p_{f}$ is discontinuous at f. Thus if $c p_{t}<n-1$, neither strong uniqueness nor point Lipschitz continuity can hold. In $|5|$, however, it was proven that $1 / p_{f}$ is continuous at f if $\partial p_{f}=n-1$. Left open are the questions of strong uniqueness and point Lipschitz continuity of $1 / p_{f}$ at f when $\partial p_{f}=n-1$. In this note, we show that if $c p_{f}=n-1$, then $1 / p_{t}$ is strongly unique and point Lipschitz continuous at f.

2. Preliminary Results

The lemmas in this section are motivated by a characterization of strong unicity constants for polynomial approximation due to Cline $|4|$. The results of this section will subsequently be used to establish the strong unicity result for best reciprocal approximation.

Let $0 \leqslant x_{0}<x_{1} \cdots<x_{n}$ be fixed, and for $t>x_{n}$, let

$$
\begin{equation*}
Q_{t}=\left\{p \in \Pi_{n}:(-1)^{n-i} p\left(x_{i}\right) \leqslant 1, \quad i=0 \ldots ., n, \text { and } p(t) \geqslant-1\right\} \tag{2.1}
\end{equation*}
$$

By the assertion on p. 64 of Rice $|6|$ (Note the misprint: $=$ should be replaced by \geqslant.) and the fact that all norms on a finite dimensional vector space are equivalent, Q_{t} is a compact subset of Π_{n}, where Π_{n} carries the Euclidean norm of the coefficient vectors. For $x \geqslant 0$, let

$$
\begin{equation*}
\left.M(t, x)=\max _{\|}|p(x)|: p \in Q_{t}\right\} . \tag{2.2}
\end{equation*}
$$

We express $M(t, x)$ in terms of $n+2$ interpolating polynomials. Define $q \in \Pi_{n}$ by

$$
q\left(x_{i}\right)=(-1)^{n}, \quad i=0, \ldots, n,
$$

and for $j=0, \ldots, n$, define $q_{j}(t, \cdot) \in \Pi_{n}$ by

$$
q_{j}\left(t, x_{i}\right)=(-1)^{n} \quad i, \quad i=0, \ldots, n, i \neq j
$$

and $q_{j}(t, t)=-1$.
Lemma 2. For $0 \leqslant x_{0}<x_{1}<\cdots<x_{n}<t$ and $x \geqslant 0, \quad M(t, x)=$ $\max \left\{|q(x)| ;\left|q_{j}(t, x)\right|, j=0, \ldots, n\right\}$.

Proof. Write $t=x_{n+1}$ and note that $p(t) \geqslant-1$ is equivalent to $(-1)^{n-(n+1)} p\left(x_{n+1}\right) \leqslant 1$. If $(-1)^{n-(n+1)} p\left(x_{n+1}\right)>0, q$ would have $n+1$ zeros. Thus $(-1)^{n-(n+1)} q\left(x_{n+1}\right) \leqslant 1$ and $q \in Q_{i}$. Similarly, $q_{j}(t, \cdot) \in Q_{i}$. $j=0, \ldots . n$. Thus $M(t, x) \geqslant \max \left\{|q(x)| ;\left|q_{j}(t, x)\right|, j=0, \ldots, n\right\}$.

Let $p \in Q_{t}$ satisfy $|p(x)|=M(t, x)$. Let $\mathscr{A}=\left\{i:(-1)^{n-i} p\left(x_{i}\right)=1\right\}$. We show that \mathscr{A} contains at least $n+1$ indices. Suppose that \mathscr{A} contains less than $n+1$ indices. Then there is an $h \in \Pi_{n}$ such that $h(x)=\operatorname{sgn} p(x)$ and $h\left(x_{i}\right)=-(-1)^{n-i}$ for $i \in \mathscr{A}$. For $\varepsilon>0$, let $p,=p+\varepsilon h$. For $i \in \mathscr{A}$,

$$
(-1)^{n-i} p_{\epsilon}\left(x_{i}\right)=1-\varepsilon<1,
$$

and for $i \notin \mathscr{A}$,

$$
(-1)^{n-i} p_{f}\left(x_{i}\right)=(-1)^{n-i} p\left(x_{i}\right)-\varepsilon(-1)^{n-i} h\left(x_{i}\right)<1
$$

for ε sufficiently small. Thus $p_{\epsilon} \in Q_{t}$ for ε sufficiently small. Furthermore,

$$
\left|p_{\epsilon}(x)\right|=|p(x)|+\varepsilon>M(t, x)
$$

which is a contradiction. Thus \mathscr{A} contains at least $n+1$ indices, and as a result, p is q or one of the $q_{j}(t, \cdot), j=0, \ldots, n$. Hence, $M(t, x)=\max \{|q(x)|$; $\left.\left|q_{j}(t, x)\right|, j=0, \ldots, n\right\}$.

The next lemma presents an asymptotic estimate for $M(t, x)$.
Lemma 3. Let $0 \leqslant x_{0}<x_{1}<\cdots<x_{n}$ be fixed. Then there are positive numbers A, X, and T such that $M(t, x) \leqslant A x^{n}$ for all $t \geqslant T$ and $x \geqslant X$.

Proof. Let $q(x)=a_{n} x^{n}+a_{n \ldots 1} x^{n-1}+\cdots+a_{0}$. Since q has n zeros and is not identically zero, $\partial q=n$. In fact. $a_{n}>0$. Select $X_{1}>0$ such that $x \geqslant X_{\text {t }}$ implies

$$
a_{n} x^{n} / 2<a_{n} x^{n}+\cdots+a_{0} .
$$

Now let $q_{j}(t, x)=a_{n}^{j}(t) x^{n}+a_{n-1}^{j}(t) x^{n-1}+\cdots+a_{0}^{j}(t), j=0, \ldots, n$. By the interpolatory conditions defining $q_{j}(t, \cdot)$

$$
\left[\begin{array}{cccc}
1 & t & \cdots & t^{n} \tag{2.3}\\
1 & x_{0} & \cdots & x_{0}^{n} \\
\vdots & \vdots & & \vdots \\
1 & x_{j-1} & \cdots & x_{j+1}^{n} \\
1 & x_{j+1} & \cdots & x_{j+1}^{n} \\
\vdots & \vdots & & \vdots \\
1 & x_{n} & \cdots & x_{n}^{n}
\end{array}\right]\left[\begin{array}{c}
a_{0}^{j}(t) \\
a_{1}^{\prime}(t) \\
\vdots \\
a_{n}^{j}(t)
\end{array}\right]=\left[\begin{array}{c}
-1 \\
(-1)^{n} \\
\vdots \\
(-1)^{n-j+1} \\
(-1)^{n-j} 1 \\
\vdots \\
1
\end{array}\right] .
$$

Using Cramer's rule and evaluating all determinants across the first row, $a_{k}^{j}(t)=r_{k}^{j}(t) / s^{j}(t), \quad$ where $\quad r_{k}^{j} \in \Pi_{n}, \quad k=0, \ldots, n, \quad$ and $\quad s^{j} \in \Pi_{n}, \quad j=0, \ldots, n$.

Moreover, the coefficient of t^{n} in s^{j} is given by a Vandermonde determinant and therefore is nonzero, and the coefficient of t^{n} in r_{n}^{j} is zero. That is, $\dot{c} s^{j}=n$ and $\dot{C} r_{n}^{i} \leqslant n-1, j=0, \ldots, n$. Thus we may select positive numbers D and T such that $\left|a_{n}^{j}(t)\right|<a_{n} / 4$ and $\left|a_{k}^{j}(t)\right|<D, k=0, \ldots, n-1, j=0, \ldots, n$, for all $t \geqslant T$. Finally, choose $X>X_{1}$ such that

$$
a_{n} x^{n} / 4+D\left(x^{n \cdot 1}+\cdots+1\right)<a_{n} x^{n} / 2
$$

for $x \geqslant X$. Now for $t \geqslant T$ and $x \geqslant X$,

$$
\left|q_{j}(t, x)\right|<a_{n} x^{n} / 4+D\left(x^{n} \quad 1+\cdots+1\right)<a_{n} x^{n} / 2<q(x),
$$

$j=0, \ldots, n$, and thus $M(t, x)=q(x)$. Since $X>0$ and $\dot{c} q=n$. we may now select $A>0$ such that $|q(x)| \leqslant A x^{n}$ for $x \geqslant X$, and Lemma 3 now follows from Lemma 2.

The final lemma in this section establishes a bound on $M(t, x)$ for t sufficiently large and x bounded.

Lemma 4. Let $0 \leqslant x_{0}<x_{1}<\cdots<x_{n}$ be fixed. Given $\beta>0$ there are positive numbers m and T such that $M(t, x) \leqslant m$ for all $t \geqslant T$ and $x \in|0, \beta|$.

Proof. Using (2.3) and the succeeding argument, there are constants D and T such that $\left|q_{j}(t, x)\right| \leqslant \alpha^{n}+D\left(\alpha^{n-1}+\cdots+1\right)$ for $x \in|0, \beta|$ and $t \geqslant T$. where $\alpha=\max (1 . \beta)$. Letting $m=\max \left\{\max _{x \in|0, \beta|}|q(x)|, \alpha^{n}+D\left(\alpha^{n}+\cdots\right.\right.$ $+1)\}$. Lemma 4 follows.

3. Strong Uniqueness When óp $p_{f}=n-1$

In this section, we show that if $\partial p_{f}=n-1$, then $1 / p_{f}$ is a strongly unique best approximation to f from R_{n}. It will then follow that $1 / p_{f}$ satisfies a point Lipschitz condition at f in this case.

Theorem 5. Let $\left.f \in C_{0}^{+} \mid 0, \infty\right) \backslash R_{n}$ and let $1 / p_{f}$ be the best uniform approximation to ffrom R_{n}. If $\partial p_{f}=n-1$, then there is a constant $\gamma_{l}>0$ such that

$$
\begin{equation*}
\|f-1 / p\| \geqslant\left|f-1 / p_{f}\left\|+\gamma_{f} \mid 1 / p-1 / p_{f}\right\|\right. \tag{3.1}
\end{equation*}
$$

for all $1 / p \in R_{n}$.
Proof. Suppose there is no $\gamma_{t}>0$ such that (3.1) is valid for all $1 / p \in R_{n}$. Then there is a sequence $\left\{1 / p_{k}\right\}$ in R_{n} such that

$$
\begin{equation*}
\gamma_{k}=\frac{\left\|f-1 / p_{k}|-| f-1 / p_{f}\right\|}{\left\|1 / p_{k}-1 / p_{f}\right\|} \rightarrow 0 \tag{3.2}
\end{equation*}
$$

as $k \rightarrow \infty$. The sequence $\left\{\left\|1 / p_{k}\right\|\right\}$ is bounded. Otherwise, for a subsequence $\left\{1 / p_{r}\right\}$, we would have $\left\|f-1 / p_{r}\right\| \rightarrow \infty$ and

$$
\gamma_{r} \geqslant \frac{\mid f-1 / p_{r}\|-\| f-1 / p_{f} \|}{\left\|f-1 / p_{r}\right\|+\left\|f-1 / p_{f}\right\|} \rightarrow 1
$$

as $v \rightarrow \infty$, which is contrary to (3.2). Let $\left\|f-1 / p_{k}\right\| \leqslant M$ for all k. Then

$$
0 \leqslant \frac{\left\|f-1 / p_{k}\right\|-\left\|f-1 / p_{f}\right\|}{M+\left\|f-1 / p_{f}\right\|} \leqslant \gamma_{k}
$$

and by (3.2), $\lim _{k \rightarrow \infty}\left\|f-1 / p_{k}\right\|=\left\|f-1 / p_{f}\right\|$. By the proof of Theorem 4 in Dunham and Taylor $|5|, p_{k} \rightarrow p_{f}$ as $k \rightarrow \infty$ in the sense of coefficient convergence.

Since $\partial p_{f}=n-1,1 / p_{f}$ is the best uniform approximation to f from R_{n-1} and, by Brink's result $|1|$, is strongly unique relative to R_{n-1}. By (3.2) we may then assume that $\partial p_{k}=n$ for all k. Since $\partial p_{k}>\hat{\partial} p_{f}$ and $p_{k}(x)>0$ and $p_{f}(x)>0$ for $\left.x \in \mid 0, \infty\right)$, there is a $t_{k}>0$ such that $p_{k}(x)>p_{f}(x)$ for all $x \geqslant t_{k}$. In addition, we choose t_{k} so that

$$
\begin{equation*}
t_{k} \rightarrow \infty \tag{3.3}
\end{equation*}
$$

as $k \rightarrow \infty$. Whether $f-1 / p_{f}$ demonstrates the standard or the nonstandard alternation in Theorem 1 , there are $n+1$ points $0 \leqslant x_{0}<\cdots<x_{n}$ such that

$$
\begin{equation*}
(-1)^{n-i}\left(f\left(x_{i}\right)-1 / p_{f}\left(x_{i}\right)\right)=\left\|f-1 / p_{f}\right\|_{i} \tag{3.4}
\end{equation*}
$$

$i=0, \ldots, n$. For $i=0, \ldots, n$,

$$
\begin{equation*}
(-1)^{n-i}\left(f\left(x_{i}\right)-1 / p_{k}\left(x_{i}\right)\right) \leqslant\left\|f-1 / p_{k}\right\|, \tag{3.5}
\end{equation*}
$$

$i=0 \ldots . n$. Subtracting (3.4) from (3.5) and multiplying by $p_{f}\left(x_{i}\right) p_{k}\left(x_{i}\right)$, we obtain

$$
\begin{equation*}
(-1)^{n-i}\left(p_{k}\left(x_{i}\right)-p_{j}\left(x_{i}\right)\right) \leqslant K \Delta_{k}, \tag{3.6}
\end{equation*}
$$

where $\Delta_{k}=\left\|f-1 / p_{k}\right\|-\left\|f-1 / p_{f}\right\|$ and $K=\sup \left\{p_{f}\left(x_{i}\right) p_{k}\left(x_{i}\right): i=0, \ldots, n\right.$, $k=1,2 \ldots$.$\} . Furthermore,$

$$
\begin{equation*}
p_{k}\left(t_{k}\right)-p_{f}\left(t_{k}\right)>0>-K \Delta_{k} . \tag{3.7}
\end{equation*}
$$

By (2.1), (2.2), (3.6), and (3.7),

$$
\begin{equation*}
\left|p_{k}(x)-p_{f}(x)\right| \leqslant K \Delta_{k} M\left(t_{k}, x\right) \tag{3.8}
\end{equation*}
$$

for all $x \in(0, \infty)$ and $k=1,2, \ldots$. By Lemma 3 select positive constants A. X, and T such that

$$
\begin{equation*}
M(t, x) \leqslant A x^{\prime \prime} \tag{3.9}
\end{equation*}
$$

for $x \geqslant X$ and $t \geqslant T$. Let $p_{f}(x)=a_{n}, x^{n} \quad 1+\cdots+a_{0}$, where $a_{n} \quad 1>0$, and $p_{k}(x)=a_{n}^{k} x^{n}+a_{n-1}^{k} x^{n 1}+\cdots+a_{0}^{k}$, where $a_{n}^{k}>0$ and $a_{n}^{k} \rightarrow 0$ and $a_{j}^{k} \rightarrow a_{j}$. $j=0, \ldots, n-1$. as $k \rightarrow \infty$. Select $\beta>X$ such that

$$
a_{n, 1}-\frac{\left|a_{n, 2}\right|+1}{x}-\cdots-\frac{\left|a_{0}\right|+1}{x^{n} 1}>\frac{a_{n} \mid}{2}
$$

for $x \geqslant \beta$. Now by (3.3), we may select k_{0} such that for $k \geqslant k_{0}, t_{k} \geqslant T$, $a_{n, 1}^{k}>3 a_{n-1} / 4$, and $\left|a_{j}^{k}-a_{j}\right|<1, j=0, \ldots, n-2$. Thus for $x \geqslant \beta$ and $k \geqslant k_{0}$. $\left|a_{j}^{k}\right|<\left|a_{i}\right|+1, j=0, \ldots, n-2$,

$$
\begin{aligned}
p_{1}(x) & \geqslant x^{n \cdot 1}\left(a_{n-1}-\frac{\left|a_{n \cdot 2}\right|+1}{x}-\cdots-\frac{\left|a_{0}\right|+1}{x^{n-1}}\right) \\
& >a_{n} \cdot x^{n} / 2
\end{aligned}
$$

and

$$
\begin{aligned}
p_{k}(x) & \geqslant a_{n, 1}^{k} x^{n} \quad 1+\cdots+a_{0}^{k} \\
& \geqslant x^{n} \quad\left(\frac{3 a_{n-1}}{4}-\frac{\left|a_{n-2}\right|+1}{x}-\cdots-\frac{\left|a_{0}\right|+1}{x^{n} 1}\right)>a_{n-1} x^{n-1} / 4 .
\end{aligned}
$$

Thus by (3.9)

$$
\begin{align*}
\left|\frac{1}{p_{f}(x)}-\frac{1}{p_{k}(x)}\right| & =\frac{p_{k}(x)-p_{f}(x)}{p_{f}(x) p_{k}(x)} \tag{3.10}\\
& \leqslant\left(\frac{8 A K x^{2} n}{a_{n}^{2}}\right) \Delta_{k} \leqslant\left(\frac{8 A K \beta^{2}}{a_{n-1}^{2}}\right) \Delta_{k}
\end{align*}
$$

for $x \geqslant \beta, k \geqslant k_{0}$, and $n \geqslant 2$. If $n=1$, then $\delta p_{f}=1$, and the case under consideration does not apply (see $|5|$).

Since $p_{f}(x)>0$ for $x \in\left[0, \beta \mid\right.$ and $p_{k} \rightarrow p_{f}$ uniformly on $|0, \beta|$ as $k \rightarrow \infty$, there are numbers $s>0$ and $k_{1} \geqslant k_{0}$ such that $p_{f}(x) \geqslant s$ and $p_{k}(x) \geqslant s$ for $x \in|0, \beta|$ and $k \geqslant k_{1}$. By Lemma 4 and (3.3) there are numbers $m>0$ and $k_{2} \geqslant k_{1}$ such that $M\left(t_{k}, x\right) \leqslant m$ for all $x \in|0, \beta|$ and $k \geqslant k_{2}$. Thus if $k \geqslant k_{2}$. then by (3.8)

$$
\left|\frac{1}{p_{f}(x)}-\frac{1}{p_{k}(x)}\right|=\frac{\left|p_{k}(x)-p_{f}(x)\right|}{p_{f}(x) p_{k}(x)} \leqslant \frac{m K \Delta_{k}}{s^{2}}
$$

for $x \in[0, \beta \mid$. By (3.10) and (3.11)

$$
\left\|1 / p_{k}-1 / p_{f}\right\| \leqslant M\left(\left\|f-1 / p_{k}\right\|-\left\|f-1 / p_{f}\right\|\right)
$$

for $k \geqslant k_{2}$, where $M=\max \left\{8 A K \beta^{2-n} / a_{n-1}^{2}, m K / s^{2}\right\}$. This contradicts (3.2), and Theorem 5 is proven.

We conclude this note with the companion point Lipschitz result. The proof is identical to the proof of the theorem on p. 82 of Cheney $|3|$ with $\lambda_{f}=2 / \gamma_{f}$ and is omitted.

Theorem 6. Let $\left.f \in C_{0}^{+} \mid 0, \infty\right) \backslash R_{n}$ and let $1 / p_{f}$ be the best uniform approximation to f from R_{n}. Then there is a constant $\lambda_{f}>0$ such that

$$
\left\|1 / p_{g}-1 / p_{f}\right\| \leqslant \lambda_{f}\|g-f\|
$$

for all $\left.g \in C_{0}^{+} \mid 0, \infty\right)$, where $1 / p_{g}$ denotes the best uniform approximation to g from R_{n}.

References

1. D. Brink, "Tchebycheff Approximation by Reciprocals of Polynomials on (0.,)," Ph.D. thesis, Michigan State University, 1972.
2. D. Brink and G. D. Taylor. Chebyshev approximation by reciprocals of polynomials on 10. ∞). J. Approx. Theory 16 (1976), 142-148.
3. E. W. Cheney. "Introduction to Approximation Theory." McGraw-Hill, New York. 1966.
4. A. K. Cline. Lipschitz conditions on uniform approximation operators. J. Approx. Theory 8 (1973), 160-172.
5. C. B. Dunham and G. D. Taylor, Continuity of best reciprocal polynomial approximation on $10, \infty$), J. Approx. Theory 30 (1980), 71-79.
6. J. R. Rice, "Time Approximation of Functions," Vol. I. Addison-Wesley, Reading, Mass.. 1965.
