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1. INTRODUCTION

Let Ci[0,00)={f€C|0,0): f(x)>0 for x€][0.0) and
lim, . f(x)=0}and R, = {l/p: pE€ II, and p(x) > 0 for x € |0, o)}, where
11, denotes the set of all real algebraic polynomials of degree n or less. For
g€ C, [0, c0), define || g|| = sup{| g(x): x € |0, c0)}. Uniform approximation
of functions in Cy |0, 00 ) by reciprocals of polynomials has been the topic of
several recent investigations (see |1, 2, 5] and the references of [5]). In this
setting. it is known that best approximations exist and are unique |1, 2] and
the following characterization theorem holds |2].

THEOREM 1. Let f € C; |0, 0)\R, with n > 1, and let 1/p* € R,. Then
1/p* is a best approximation to f from R, if and only if

(i) (standard alternation) there exist n + 2 points 0 < x, < x, < --- <
X, ., such that |f(x)—1/p*(x)=|If—1/p*|, i=0..n+1. and
S = Up*(x) = —(/(x11) = Up*(xp. ) i = O, 0r

(ii) (nonstandard alternation) ép* < n — | and there exist n + 1 points
0<x, <X, <+ <x, such that f(x;)— 1/p*(x)=1" "|If— 1/p*]l.
i =0..... n, where &p* denotes the degree of p*.

In the remainder of this note 1/p, shall denote the best approximation to
SE€Cy [0, 00) from R,.

In this note we study strong uniqueness of 1/p, and point Lipschitz
continuity of the best approximation operator. In Brink [1], it was shown
that if ép, = n, then 1/p, is a strongly unique best approximation to f from
R, . that is. there is a constant y, > 0 such that

W/ =1Upl 21/ = Vpl + v 1/p = 1/p/l]
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for all 1/p€R,. A companion result is that [/p, is point Lipschitz
continuous at f, that is, there is a constant A, > O such that

| p— 1p, i< Al g — /!

for all g€ Cy 10, 00). In Dunham and Taylor |5] it was shown that if
cp,<n—1, then 1/p, is discontinuous at f. Thus if é&p, < n — 1, neither
strong uniqueness nor point Lipschitz continuity can hold. In |51, however, it
was proven that 1/p, is continuous at / if ép,=n — 1. Left open are the
questions of strong uniqueness and point Lipschitz continuity of 1/p, at /
when ¢ép,=n — 1. In this note, we show that if ¢p,=#n -1, then 1/p, is
strongly unique and point Lipschitz continuous at f.

2. PRELIMINARY RESULTS

The lemmas in this section are motivated by a characterization of strong
unicity constants for polynomial approximation due to Cline |4]. The results
of this section will subsequently be used to establish the strong unicity result
for best reciprocal approximation.

Let 0 < x, < x, --- < x, be fixed, and for ¢ > x,, let

Q,=tpel, (1) "plx)< 1. i=0...n and p(t) > -1} (2.1)

By the assertion on p.64 of Rice {6] (Note the misprint: = should be
replaced by >.) and the fact that all norms on a finite dimensional vector
space are equivalent, (0, is a compact subset of /1,, where /I, carries the
Euclidean norm of the coefficient vectors. For x > 0, let

M(t, x) = max{|p(x)|: p€ Q,}. (2.2)

We express M(t,x) in terms of n+ 2 interpolating polynomials. Define
q €11, by

glx)=(=1y" . i=0..mn,
and for j =0,..., n, define g,(¢t, -) € 11, by
git,x;)=(=1y" " i=0..n i#]
and gz, 1) = —1.

1”([,)() =

%
<

LEMMA 2. For O0<x,<x, < - <x,<t and «x
max{|g{x): |g,{t. x), /= O,..., n}.
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Proof. Write t=ux,,, and note that p(t)> -1 is equivalent to
()" "V p(x,, )< L If (=1)"" " "p(x,, ) >0, ¢ would have n+ |
zeros. Thus (—1)""“"*""q(x,,,)<1 and ¢ € Q,. Similarly, g/t )€ Q,.
J=0....n. Thus M(¢, x) > max{|g(x)[; [g,(t, x)|, j = O...., n}.

Let p€ Q, satisfy | p(x)|=M(t,x). Let & = {i: (=1)" 'p(x,)=1}. We
show that .o/ contains at least n + | indices. Suppose that .%/ contains less
than n 4+ | indices. Then there is an h € I1, such that A(x)=sgn p(x) and
h(x;)=—(—1)"""for i€ o/. For ¢ > 0, let p, = p + ¢h. For i € &

—D)" px)=1-¢<1,
and for i & &,
(=1)" " 'pfx) = (1) px;) = e(=1)" "h(x;) < 1
for ¢ sufficiently small. Thus p, € Q, for ¢ sufficiently small. Furthermore,
[ p(x) =1 plx) + &> M(t, x),

which is a contradiction. Thus % contains at least n + 1 indices, and as a
result, p is g or one of the g,t, -), j=0.... n. Hence, M(z. x) = max{ig(x)[;
19,(t ) j = Orecy ).

The next lemma presents an asymptotic estimate for M(f, x).

LEMMA 3. Let 0 < xy< x, < -+ <x, be fixed. Then there are positive
numbers A, X, and T such that M(t, x) < Ax" for all t > T and x> X.

Proof. Letg(x)=a,x"+a, x" '+ .-+ a,.Since g has n zeros and is

not identically zero, ég = n. In fact, a, > 0. Select X, > 0 such that x > X
implies

a,x"/2 <a,x"+ - +a,.
Now let g(t,x)=al()x" +al_,(1)x" "'
interpolatory conditions defining g,(¢, -)

4+ e+ a-(’;([), Jj= 0,.... n. By the

[ ] I
I ox, - X} ; -1
. .0 -() ajo(t) ( : )
. . . a/ ! ;1 i
1 X e X};’ . 1() = (———1)’17/1 . (23)
! Xjwv X.;';x @) (*1). !
L1 X, X | L 1 |

Using C_ramer’s rule and evaluating all determinants across the first row,
a(t) = ri(t)/s(t), where r,ef,, k=0,.,n, and s'€M,, j=0,..,n
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Moreover, the coefficient of ¢" in s’ is given by a Vandermonde determinant
and therefore is nonzero, and the coefficient of ¢* in rﬁ, is zero. That is.
&8’ =n and érl, <n— 1. j=0...,n. Thus we may select positive numbers D
and T such that |@/(¢)| < a,/4 and |a}(t) < D. k = O0,..,n — 1, j=0...., n, for
all 1> T. Finally, choose X > X, such that

a,x"/4+ D" '+ + 1) <a,x"/2
for x > X. Now for t > T and x > X,
gt x) <a,x"/4+ D" ) <a,x"/2 < gx),

J=0.....n, and thus M(t, x)=g(x). Since X > 0 and ¢g = n. we may now
select 4 > 0 such that {g(x) < 4x" for x> X, and Lemma 3 now follows
from Lemma 2.

The final lemma in this section establishes a bound on M(:, x) for ¢
sufficiently large and x bounded.

LEMMA 4. Let 0 x,<x, < <x, be fixed. Given >0 there are
positive numbers m and T such that M(t, x) < m for all t > T and x € |0, f].

Proof.  Using (2.3) and the succeeding argument, there are constants D
and T such that |g(t,x)| <a"+D(@" '+ -~ + 1) for x€ |0,f] and 1 > T.
where « = max(l.f). Letting m = max{max ., 4 |g(x). «"+ D(a" '+ -
+ 1)}. Lemma 4 follows.

3. STRONG UNIQUENESS WHEN ¢p,=n — |

In this section, we show that if ép,=n — 1, then 1/p, is a strongly unique
best approximation to f from R,,. It will then follow that 1/p, satisfies a point
Lipschitz condition at f in this case.

THEOREM 5. Let f€ Cy |0, 000\R, and let 1/p, be the best uniform
approximation to [ from R,. If ép,=n — 1. then there is a constant y,> 0
such that

If = Upl 21/ = VYpdi+31 Up—1/p (3.1)
forall 1/peR,.
Proof. Suppose there is no y,>0 such that (3.1) is valid for all
1/p € R,. Then there is a sequence {1/p,} in R, such that

- L = Ypdi =1/ = 0 (3.2)
11/p, — 1/p/ll
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as k — oo. The sequence {||1/p, ||} is bounded. Otherwise, for a subsequence
{1/p,}. we would have | f— I/p.||— o and

y s W = Upd =1/ = Upl
S = Up 1S = 1pl

as v — oo, which is contrary to (3.2). Let || f — 1/p,l| < M for all k. Then

IS = Uil =17 = 1l
STMAls-upl S

and by (3.2), lim,_, ||/ — 1/p,|| =1/ — 1/p/. By the proof of Theorem 4 in
Dunham and Taylor |S]|, p,— p, as k— oo in the sense of coefficient con-
vergence.

Since dp,=n — 1, 1/p, is the best uniform approximation to f from R, _,
and, by Brink’s result |1], is strongly unique relative to R, ,. By (3.2) we
may then assume that dp, = n for all k. Since dp, > ép, and p,(x) > 0 and
pAx) >0 for x € |0, ), there is a 1, > 0 such that p,(x) > p{x) for all
X 2 t,. In addition, we choose ¢, so that

ty = @ (3.3)

as k — oo. Whether /' — 1/p, demonstrates the standard or the nonstandard
alternation in Theorem 1, there are n + 1 points 0  x, < --- < x,, such that

(=" = Updx)) = IS — 1p,l. (3.4)

(=D)" (S 0e) = Vpalx)) < IS = (3.5)

i = 0...., n. Subtracting (3.4) from (3.5) and multiplying by pAx;) p,(x;). we
obtain

(=1 (pulx;) = pAx)) < (3.6)

where A, =/ — 1/p,|| = |l.f — l/p/H and K =sup{pdx;) pi(x;): i=0...n,
k=1, 2...}. Furthermore,

pulty) — pAt) > 0> —K4,. (3.7)
By (2.1), (2.2), (3.6), and (3.7),

| Pu(x) — pAX)| < KA M(ty., x) (3.8)
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for all x€ 10, o0) and k=1, 2,.... By Lemma 3 select positive constants 4.
X. and T such that

Mt x) < Ax" (3.9)
for x> X and 1 > T. Let pdx)=a, x" '+ - +a,, where a, , >0, and
pulvy=apx" +ah_\x" '+ .. +ab, where af >0 and @* >0 and ¢f - a,.
J=0...n—1.as k- oo. Select § > X such that

a, | - ‘(1” 2‘ +LM rja(b‘ Tll > a, |
X X" 2

for x> f. Now by (3.3), we may select &, such that for k > k,. 1, > 7.
ay ,>3a, /4. and |af —a;| < 1,j=0...n—2. Thus for x >f and k > k.
lab| <la;i + 1. j=0usn — 2,

ian Zi+l 1|a0‘+1)

- n- 1
p/("‘))" (a,, R a1
\ X X

>a" 1,\’” 1//2

and
L) A o , k
pux)za, (X" T+ ta

3a a 1 I
>xn 1 < n 1_. n—2‘+ inwﬁ%)/\ nwl,\'" U4
4 X X

Thus by (3.9)

Pl L i) — pix))
) p) | T plx) pelx)
, 7 (3.10)
[ 8AKx" " [ BAKpT ™
< (“—z—)ﬁké (“——) 4y
a a

no1 "

for x> f, k> k,, and n>2 2. If n=1, then dp,=1, and the case under
consideration does not apply (see [5]).

Since p{x) > 0 for x € |0, ] and p, — p, uniformly on |0, 8| as k — co.
there are numbers s > 0 and k, >k, such that p{x)>s and p,(x)>s for
x € [0.8] and k > k,. By Lemma 4 and (3.3) there are numbers m > 0 and
k, >k, such that M(t,, x) < m for all x€ |0.f| and k > k,. Thus if k > k,.
then by (3.8)

| I _ | PrlX) — pAx)| < mK4, (3.11)

00 20 | T i p) S s
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for x € |0, f]. By (3.10) and (3.11)

1/py = 1p A <ML — Vpill = ILf = 1/p )

for k > k,, where M = max{84Kf* "/a. ,,mK/s"}. This contradicts (3.2),
and Theorem 5 is proven.

We conclude this note with the companion point Lipschitz result. The
proof is identical to the proof of the theorem on p. 82 of Cheney [3]| with
A,=2/y, and is omitted.

THEOREM 6. Let f€ Cy|0, 0)\R, and let 1/p, be the best uniform
approximation to f from R,. Then there is a constant A, > 0 such that

11/pe— 1/ <4,11g = f1

Jor all g€ C; |0, 00), where 1/p, denotes the best uniform approximation to
g from R,.
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