Strong Uniqueness for Chebyshev Approximation by Reciprocals of Polynomials on $[0, \infty)$

DARRELL SCHMIDT

Department of Mathematical Sciences, Oakland University. Rochester, Michigan 48063

Communicated by E. W. Cheney

Received July 2, 1979

1. INTRODUCTION

Let $C_0^+|0,\infty) = \{f \in C[0,\infty): f(x) > 0 \text{ for } x \in [0,\infty) \text{ and } \lim_{x \to x} f(x) = 0\}$ and $R_n = \{1/p: p \in \Pi_n \text{ and } p(x) > 0 \text{ for } x \in [0,\infty)\}$, where Π_n denotes the set of all real algebraic polynomials of degree *n* or less. For $g \in C_0^+|0,\infty)$, define $||g|| = \sup\{|g(x)|: x \in [0,\infty)\}$. Uniform approximation of functions in $C_0^+|0,\infty)$ by reciprocals of polynomials has been the topic of several recent investigations (see [1, 2, 5] and the references of [5]). In this setting, it is known that best approximations exist and are unique [1, 2] and the following characterization theorem holds [2].

THEOREM 1. Let $f \in C_0^+ | 0, \infty \rangle \setminus R_n$ with $n \ge 1$, and let $1/p^* \in R_n$. Then $1/p^*$ is a best approximation to f from R_n if and only if

(i) (standard alternation) there exist n + 2 points $0 \le x_0 < x_1 < \dots < x_{n+1}$ such that $|f(x_i) - 1/p^*(x_i)| = ||f - 1/p^*||$, $i = 0, \dots, n+1$, and $f(x_i) - 1/p^*(x_i) = -(f(x_{i+1}) - 1/p^*(x_{i+1}))$, $i = 0, \dots, n$, or

(ii) (nonstandard alternation) $\partial p^* \leq n-1$ and there exist n+1 points $0 \leq x_0 < x_1 < \cdots < x_n$ such that $f(x_i) - 1/p^*(x_i) = (-1)^{n-i} ||f - 1/p^*||$, i = 0, ..., n, where ∂p^* denotes the degree of p^* .

In the remainder of this note $1/p_f$ shall denote the best approximation to $f \in C_0^+ |0, \infty)$ from R_n .

In this note we study strong uniqueness of $1/p_f$ and point Lipschitz continuity of the best approximation operator. In Brink [1], it was shown that if $\partial p_f = n$, then $1/p_f$ is a strongly unique best approximation to f from R_n , that is, there is a constant $\gamma_f > 0$ such that

$$||f - 1/p|| \ge ||f - 1/p_f|| + \gamma_f ||1/p - 1/p_f||$$
277

for all $1/p \in R_n$. A companion result is that $1/p_f$ is point Lipschitz continuous at f, that is, there is a constant $\lambda_f > 0$ such that

$$\|1/p_g - 1/p_f\| \leq \lambda_f \|g - f\|$$

for all $g \in C_0^+[0, \infty)$. In Dunham and Taylor [5] it was shown that if $\partial p_f < n-1$, then $1/p_f$ is discontinuous at f. Thus if $\partial p_f < n-1$, neither strong uniqueness nor point Lipschitz continuity can hold. In [5], however, it was proven that $1/p_f$ is continuous at f if $\partial p_f = n-1$. Left open are the questions of strong uniqueness and point Lipschitz continuity of $1/p_f$ at f when $\partial p_f = n-1$. In this note, we show that if $\partial p_f = n-1$, then $1/p_f$ is strongly unique and point Lipschitz continuous at f.

2. PRELIMINARY RESULTS

The lemmas in this section are motivated by a characterization of strong unicity constants for polynomial approximation due to Cline [4]. The results of this section will subsequently be used to establish the strong unicity result for best reciprocal approximation.

Let $0 \leq x_0 < x_1 \cdots < x_n$ be fixed, and for $t > x_n$, let

$$Q_{t} = \{ p \in \Pi_{n} : (-1)^{n-i} p(x_{i}) \leq 1, \quad i = 0, ..., n, \text{ and } p(t) \geq -1 \}.$$
 (2.1)

By the assertion on p. 64 of Rice |6| (Note the misprint: = should be replaced by \geq .) and the fact that all norms on a finite dimensional vector space are equivalent, Q_i is a compact subset of Π_n , where Π_n carries the Euclidean norm of the coefficient vectors. For $x \geq 0$, let

$$M(t, x) = \max\{|p(x)|: p \in Q_t\}.$$
 (2.2)

We express M(t, x) in terms of n + 2 interpolating polynomials. Define $q \in \Pi_n$ by

$$q(x_i) = (-1)^{n-i}, \qquad i = 0, ..., n,$$

and for j = 0, ..., n, define $q_i(t, \cdot) \in \Pi_n$ by

$$q_j(t, x_i) = (-1)^{n-i}, \qquad i = 0, ..., n, \ i \neq j,$$

and $q_i(t, t) = -1$.

LEMMA 2. For $0 \le x_0 < x_1 < \cdots < x_n < t$ and $x \ge 0$, $M(t, x) = \max\{|q(x)|; |q_j(t, x)|, j = 0, ..., n\}.$

Proof. Write $t = x_{n+1}$ and note that $p(t) \ge -1$ is equivalent to $(-1)^{n-(n+1)} p(x_{n+1}) \le 1$. If $(-1)^{n-(n+1)} p(x_{n+1}) > 0$, q would have n+1 zeros. Thus $(-1)^{n-(n+1)} q(x_{n+1}) \le 1$ and $q \in Q_i$. Similarly, $q_j(t, \cdot) \in Q_i$, j = 0, ..., n. Thus $M(t, x) \ge \max\{|q(x)|; |q_j(t, x)|, j = 0, ..., n\}$.

Let $p \in Q_t$ satisfy |p(x)| = M(t, x). Let $\mathscr{A} = \{i: (-1)^{n-i}p(x_i) = 1\}$. We show that \mathscr{A} contains at least n+1 indices. Suppose that \mathscr{A} contains less than n+1 indices. Then there is an $h \in \Pi_n$ such that $h(x) = \operatorname{sgn} p(x)$ and $h(x_i) = -(-1)^{n-i}$ for $i \in \mathscr{A}$. For $\varepsilon > 0$, let $p_{\varepsilon} = p + \varepsilon h$. For $i \in \mathscr{A}$,

$$(-1)^{n-i}p_{\epsilon}(x_i)=1-\varepsilon<1,$$

and for $i \notin \mathscr{A}$,

$$(-1)^{n-i}p_{\epsilon}(x_i) = (-1)^{n-i}p(x_i) - \varepsilon(-1)^{n-i}h(x_i) < 1$$

for ε sufficiently small. Thus $p_{\varepsilon} \in Q_{t}$ for ε sufficiently small. Furthermore,

$$|p_{\epsilon}(x)| = |p(x)| + \varepsilon > M(t, x),$$

which is a contradiction. Thus \mathscr{A} contains at least n + 1 indices, and as a result, p is q or one of the $q_j(t, \cdot), j = 0, ..., n$. Hence, $M(t, x) = \max\{|q(x)|; |q_j(t, x)|, j = 0, ..., n\}$.

The next lemma presents an asymptotic estimate for M(t, x).

LEMMA 3. Let $0 \le x_0 < x_1 < \cdots < x_n$ be fixed. Then there are positive numbers A, X, and T such that $M(t, x) \le Ax^n$ for all $t \ge T$ and $x \ge X$.

Proof. Let $q(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$. Since q has n zeros and is not identically zero, $\partial q = n$. In fact, $a_n > 0$. Select $X_1 > 0$ such that $x \ge X_1$ implies

$$a_n x^n/2 < a_n x^n + \dots + a_0.$$

Now let $q_j(t, x) = a_n^j(t)x^n + a_{n-1}^j(t)x^{n-1} + \dots + a_0^j(t), j = 0, \dots, n$. By the interpolatory conditions defining $q_j(t, \cdot)$

$$\begin{bmatrix} 1 & t & \cdots & t^{n} \\ 1 & x_{0} & \cdots & x_{0}^{n} \\ \vdots & \vdots & & \vdots \\ 1 & x_{j-1} & \cdots & x_{j-1}^{n} \\ \vdots & & \vdots & & \vdots \\ 1 & x_{n} & \cdots & x_{n}^{n} \end{bmatrix} \begin{bmatrix} a_{0}^{j}(t) \\ a_{1}^{j}(t) \\ \vdots \\ a_{n}^{j}(t) \end{bmatrix} = \begin{bmatrix} -1 \\ (-1)^{n} \\ \vdots \\ (-1)^{n-j+1} \\ (-1)^{n-j-1} \\ \vdots \\ 1 \end{bmatrix}.$$
(2.3)

Using Cramer's rule and evaluating all determinants across the first row, $a_k^i(t) = r_k^j(t)/s^i(t)$, where $r_k^j \in \Pi_n$, k = 0,...,n, and $s^i \in \Pi_n$, j = 0,...,n.

Moreover, the coefficient of t^n in s^j is given by a Vandermonde determinant and therefore is nonzero, and the coefficient of t^n in r_n^j is zero. That is, $\partial s^j = n$ and $\partial r_n^j \leq n-1$, j = 0,...,n. Thus we may select positive numbers Dand T such that $|a_n^j(t)| < a_n/4$ and $|a_k^j(t)| < D$, k = 0,..., n-1, j = 0,..., n, for all $t \ge T$. Finally, choose $X > X_1$ such that

$$a_n x^n/4 + D(x^{n+1} + \dots + 1) < a_n x^n/2$$

for $x \ge X$. Now for $t \ge T$ and $x \ge X$,

$$|q_i(t,x)| < a_n x^n/4 + D(x^{n-1} + \dots + 1) < a_n x^n/2 < q(x),$$

j = 0,..., n, and thus M(t, x) = q(x). Since X > 0 and cq = n, we may now select A > 0 such that $|q(x)| \leq Ax^n$ for $x \geq X$, and Lemma 3 now follows from Lemma 2.

The final lemma in this section establishes a bound on M(t, x) for t sufficiently large and x bounded.

LEMMA 4. Let $0 \leq x_0 < x_1 < \cdots < x_n$ be fixed. Given $\beta > 0$ there are positive numbers m and T such that $M(t, x) \leq m$ for all $t \geq T$ and $x \in [0, \beta]$.

Proof. Using (2.3) and the succeeding argument, there are constants D and T such that $|q_j(t,x)| \leq \alpha^n + D(\alpha^{n-1} + \dots + 1)$ for $x \in [0,\beta]$ and $t \geq T$, where $\alpha = \max(1,\beta)$. Letting $m = \max\{\max_{x \in [0,\beta]} |q(x)|, \alpha^n + D(\alpha^{n-1} + \dots + 1)\}$, Lemma 4 follows.

3. Strong Uniqueness When $\partial p_f = n - 1$

In this section, we show that if $\partial p_f = n - 1$, then $1/p_f$ is a strongly unique best approximation to f from R_n . It will then follow that $1/p_f$ satisfies a point Lipschitz condition at f in this case.

THEOREM 5. Let $f \in C_0^+[0,\infty) \setminus R_n$ and let $1/p_f$ be the best uniform approximation to f from R_n . If $\partial p_f = n - 1$, then there is a constant $\gamma_f > 0$ such that

$$\|f - 1/p\| \ge \|f - 1/p_f\| + \gamma_f \|1/p - 1/p_f\|$$
(3.1)

for all $1/p \in R_n$.

Proof. Suppose there is no $\gamma_f > 0$ such that (3.1) is valid for all $1/p \in R_n$. Then there is a sequence $\{1/p_k\}$ in R_n such that

$$\gamma_k = \frac{\|f - 1/p_k\| - \|f - 1/p_f\|}{\|1/p_k - 1/p_f\|} \to 0$$
(3.2)

as $k \to \infty$. The sequence $\{\|1/p_k\|\}$ is bounded. Otherwise, for a subsequence $\{1/p_r\}$, we would have $\|f - 1/p_r\| \to \infty$ and

$$\gamma_r \ge \frac{\|f - 1/p_r\| - \|f - 1/p_f\|}{\|f - 1/p_r\| + \|f - 1/p_f\|} \to 1$$

as $v \to \infty$, which is contrary to (3.2). Let $||f - 1/p_k|| \leq M$ for all k. Then

$$0 \leqslant \frac{\|f - 1/p_k\| - \|f - 1/p_f\|}{M + \|f - 1/p_f\|} \leqslant \gamma_k$$

and by (3.2), $\lim_{k\to\infty} ||f - 1/p_k|| = ||f - 1/p_f||$. By the proof of Theorem 4 in Dunham and Taylor [5], $p_k \to p_f$ as $k \to \infty$ in the sense of coefficient convergence.

Since $\partial p_f = n - 1$, $1/p_f$ is the best uniform approximation to f from R_{n-1} and, by Brink's result [1], is strongly unique relative to R_{n-1} . By (3.2) we may then assume that $\partial p_k = n$ for all k. Since $\partial p_k > \partial p_f$ and $p_k(x) > 0$ and $p_f(x) > 0$ for $x \in [0, \infty)$, there is a $t_k > 0$ such that $p_k(x) > p_f(x)$ for all $x \ge t_k$. In addition, we choose t_k so that

$$t_k \to \infty$$
 (3.3)

as $k \to \infty$. Whether $f - 1/p_f$ demonstrates the standard or the nonstandard alternation in Theorem 1, there are n + 1 points $0 \le x_0 < \cdots < x_n$ such that

$$(-1)^{n-i}(f(x_i) - 1/p_f(x_i)) = ||f - 1/p_f||, \qquad (3.4)$$

i = 0, ..., n. For i = 0, ..., n,

$$(-1)^{n-i}(f(x_i) - 1/p_k(x_i)) \leq ||f - 1/p_k||,$$
(3.5)

i = 0,..., n. Subtracting (3.4) from (3.5) and multiplying by $p_j(x_i) p_k(x_i)$, we obtain

$$(-1)^{n-i}(p_k(x_i) - p_f(x_i)) \leqslant K \Delta_k,$$
(3.6)

where $\Delta_k = ||f - 1/p_k|| - ||f - 1/p_f||$ and $K = \sup\{p_f(x_i) \mid p_k(x_i): i = 0,...,n, k = 1, 2,...\}$. Furthermore,

$$p_k(t_k) - p_f(t_k) > 0 > -K\Delta_k.$$
 (3.7)

By (2.1), (2.2), (3.6), and (3.7),

$$|p_k(x) - p_f(x)| \leq K\Delta_k M(t_k, x)$$
(3.8)

for all $x \in [0, \infty)$ and $k = 1, 2, \dots$. By Lemma 3 select positive constants A. X. and T such that

$$M(t,x) \leqslant Ax^n \tag{3.9}$$

for $x \ge X$ and $t \ge T$. Let $p_j(x) = a_{n-1}x^{n-1} + \dots + a_0$, where $a_{n-1} > 0$, and $p_k(x) = a_n^k x^n + a_{n-1}^k x^{n-1} + \dots + a_0^k$, where $a_n^k > 0$ and $a_n^k \to 0$ and $a_j^k \to a_j$. $j = 0, \dots, n-1$, as $k \to \infty$. Select $\beta > X$ such that

$$a_{n+1} - \frac{|a_{n-2}| + 1}{x} - \dots - \frac{|a_0| + 1}{x^{n+1}} > \frac{a_{n-1}}{2}$$

for $x \ge \beta$. Now by (3.3), we may select k_0 such that for $k \ge k_0$, $t_k \ge T$, $a_{n-1}^k > 3a_{n-1}/4$, and $|a_j^k - a_j| < 1$, j = 0, ..., n-2. Thus for $x \ge \beta$ and $k \ge k_0$, $|a_j^k| < |a_j| + 1$, j = 0, ..., n-2,

$$p_{f}(x) \ge x^{n+1} \left(a_{n-1} - \frac{|a_{n-2}| + 1}{x} - \dots - \frac{|a_{0}| + 1}{x^{n-1}} \right)$$
$$> a_{n-1} x^{n-1}/2$$

and

$$p_{k}(x) \ge a_{n-1}^{k} x^{n-1} + \dots + a_{0}^{k}$$
$$\ge x^{n-1} \left(\frac{3a_{n-1}}{4} - \frac{|a_{n-2}| + 1}{x} - \dots - \frac{|a_{0}| + 1}{x^{n-1}} \right) > a_{n-1} x^{n-1} / 4.$$

Thus by (3.9)

$$\left| \frac{1}{p_{f}(x)} - \frac{1}{p_{k}(x)} \right| = \frac{|p_{k}(x) - p_{f}(x)|}{p_{f}(x) p_{k}(x)} \\ \leq \left(\frac{8AKx^{2-n}}{a_{n-1}^{2}} \right) \Delta_{k} \leq \left(\frac{8AK\beta^{2-n}}{a_{n-1}^{2}} \right) \Delta_{k}$$
(3.10)

for $x \ge \beta$, $k \ge k_0$, and $n \ge 2$. If n = 1, then $\partial p_f = 1$, and the case under consideration does not apply (see [5]).

Since $p_f(x) > 0$ for $x \in [0, \beta]$ and $p_k \to p_f$ uniformly on $[0, \beta]$ as $k \to \infty$, there are numbers s > 0 and $k_1 \ge k_0$ such that $p_f(x) \ge s$ and $p_k(x) \ge s$ for $x \in [0, \beta]$ and $k \ge k_1$. By Lemma 4 and (3.3) there are numbers m > 0 and $k_2 \ge k_1$ such that $M(t_k, x) \le m$ for all $x \in [0, \beta]$ and $k \ge k_2$. Thus if $k \ge k_2$. then by (3.8)

$$\left|\frac{1}{p_f(x)} - \frac{1}{p_k(x)}\right| = \frac{|p_k(x) - p_f(x)|}{p_f(x) p_k(x)} \le \frac{mK\Delta_k}{s^2}$$
(3.11)

282

for $x \in [0, \beta]$. By (3.10) and (3.11)

$$||1/p_k - 1/p_f|| \leq M(||f - 1/p_k|| - ||f - 1/p_f||)$$

for $k \ge k_2$, where $M = \max\{8AK\beta^{2-n}/a_{n-1}^2, mK/s^2\}$. This contradicts (3.2), and Theorem 5 is proven.

We conclude this note with the companion point Lipschitz result. The proof is identical to the proof of the theorem on p. 82 of Cheney [3] with $\lambda_{\ell} = 2/\gamma_{\ell}$ and is omitted.

THEOREM 6. Let $f \in C_0^+[0,\infty) \setminus R_n$ and let $1/p_f$ be the best uniform approximation to f from R_n . Then there is a constant $\lambda_f > 0$ such that

$$\|1/p_g - 1/p_f\| \leq \lambda_f \|g - f\|$$

for all $g \in C_0^+ | 0, \infty$), where $1/p_g$ denotes the best uniform approximation to g from R_n .

References

- 1. D. BRINK, "Tchebycheff Approximation by Reciprocals of Polynomials on $[0, \infty)$." Ph.D. thesis, Michigan State University, 1972.
- 2. D. BRINK AND G. D. TAYLOR. Chebyshev approximation by reciprocals of polynomials on $[0, \infty)$, J. Approx. Theory 16 (1976), 142–148.
- 3. E. W. CHENEY, "Introduction to Approximation Theory," McGraw-Hill, New York, 1966.
- A. K. CLINE. Lipschitz conditions on uniform approximation operators, J. Approx. Theory 8 (1973), 160–172.
- 5. C. B. DUNHAM AND G. D. TAYLOR, Continuity of best reciprocal polynomial approximation on $[0, \infty)$, J. Approx. Theory **30** (1980), 71-79.
- J. R. RICE, "Time Approximation of Functions," Vol. 1, Addison-Wesley, Reading, Mass., 1965.